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Abstract 
The paper presents the results of forest cover change mapping in two study areas in Bulgaria 

(in mountainous and plain-hilly terrain) for period of about 20 years. A comparison was made of two 

approaches for classification of multitemporal SPOT HRV/HRVIR data with 20 m spatial resolution. 

The first approach was the post-classification comparison, i.e. pixel-by-pixel comparison of forest/non-

forest maps produced by separate classifications of the images from the two ends of the time period. 

The second approach was a direct multitemporal classification of an image stack comprised of the two-

date image data. Following international guidance, instead of counting pixels in the map to obtain the 

area of forest loss and gain, the areas were estimated by applying an unbiased estimator to sample 

data collected by stratified random sampling. The map was used to stratify the study areas. Producer’s, 

user’s and overall accuracy were also estimated using the sample data. A comparison of accuracy and 

area estimates, and confidence intervals of estimates, showed that the map produced by direct 

multitemporal classification was more accurate. It yielded consistently higher class-specific accuracies 

than the map made by post-classification comparison. As expected, the accuracies of the change classes 

– forest disturbance and reforestation – were significantly lower than that of the stable classes 

regardless of the change detection approach. Finally, practical issues and guidelines for future forest 

change detection studies were discussed. 

 

 
Introduction 
 

 Bulgarian forestry and agriculture have been experiencing transformations 
for several decades as a result of the transition to market economy, demographic 
processes, and the adoption of the EU Common Agricultural Policy (CAP). These 
transformations are accompanied with change in land use and land cover. 
Abandonment of pastures in mountainous and semi-mountainous regions and their 
natural reforestation were widespread in 1990s [1]. More recently, the opposite 
changes may be occasionally observed, namely that young forests are cleared and 
land is back transformed into pastures, a process which is stimulated by the CAP 
payments for maintaining pastures in good condition. In the meantime illegal logging 
increases as well as the development activity in forest areas (e.g. construction of new 
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ski resorts and facilities) [2]. In addition to these factors, forest disturbance due to 
wildfires and pest infestation are not uncommon and may affect significant area 
[3–5]. 

 Mapping of areas of forest cover gain and loss in Bulgaria using traditional 
forest inventory data is practically impossible because of the lack of archived 
georeferenced data. Remote sensing is an alternative data source, which provides 
both high spatial resolution and historical perspective. In this context, the study has 
been initiated to evaluate the possibilities of using 20 m SPOT HRV/HRVIR 
imagery for change detection in Bulgarian forests. It was carried out as a pilot study 
in two test areas and the aim was to provide guidelines for future applications of 
SPOT data for forest change detection at country level. The SPOT data were selected 
because of the long image archive dating back to 1980s and the higher spatial 
resolution as compared to Landsat.  

 A major concern in every forest change mapping effort is the selection of 
digital change detection method. A variety of digital change detection techniques 
utilising satellite image data has become available in the recent decades to monitor 
ecosystem changes, including forest cover gain and loss [6]. Although sophisticated 
methods to continuously detect changes over a period of time have been proposed 
(e.g. [7]) the bi-temporal change detection, i.e. using an image from each end of the 
time interval of interest, is still widely used when dense image time series cannot be 
compiled. Two of the most common bi-temporal change detection methods are post-
classification comparison (PCC) [8, 9] and multitemporal classification (MTC)  
[10–12]. The first method involves application of spectral classification on each 
image independently and then pixel-by-pixel comparison to detect changes in land 
cover type [6]. The second method applies spectral classification on an image stack, 
combining data from both dates. The relative performance of the two methods has 
rarely been evaluated. One example is Mas [13] who compared quantitatively the 
two methods applying them to Landsat MSS data to map changes in five land cover 
classes in a tropical region. He found that the post-classification comparison 
produced significantly higher accuracy than multitemporal classification did. On the 
other hand, the team led by Olofsson [14], in a comparison of forest cover change 
maps across Romania, reported considerably lower accuracy due to large 
commission errors in the map generated by post-classification comparison compared 
to multitemporal classification. Using simulated data Almutairi and Warner [15] 
showed that the two methods perform very similarly with the multitemporal 
classification approach being slightly more accurate.  

 The objectives of this study are: 1) to assess how accurately forest cover 
change in Bulgaria can be mapped using 20 m SPOT HRV/HRVIR imagery, and 2) 
to evaluate the relative performance of post-classification comparison and 
multitemporal classification as change detection methods. The paper should be 
regarded as a Bulgarian case study and we do not try to generalize our results 
regarding the two change detection methods over other regions or image types.    
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Study area 
 

Two study areas with contrasting physiography and land use patterns are 
selected (Fig. 1). They represent wide range of conditions in terms of topography, 
forest types and land-use patterns and are representative for a large part of Bulgaria.  

 

 
 

Fig. 1. Maps of the two study areas showing the SPOT imagery  

and the panchromatic aerial photographs used in the study.  

The change detection was carried out for the hatched areas. 

 

 Study area 1 covers the Rila Mountains (2925 m a.s.l.) and the surrounding 
basins. It features high relief, extensive natural coniferous forests and land use 
dominated by forestry, nature conservation, tourism, and agriculture. The main 
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species in the coniferous forests are Scots pine, Norway spruce, and Mountain 
(dwarf) pine. Steep slopes and deeply incised valleys are characteristic for Study 
area 1 and allow for testing the change detection algorithms in complicated 
topographic setting. The main factors for the forest change in the area are timber 
industry, infrastructure and development projects, including for ski resorts, natural 
regeneration of trees on abandoned pastures, and wildfires. 
 Study area 2 is located in the western part of the Strandzha Mountains where 
hilly relief predominates. Forests are mostly broadleaved (Turkey oak, Hungarian 
oak, Quercus polycarpa, etc.) with some sparse coniferous plantations. Agricultural 
lands are widespread and dominate in the west part of Study area 2. The changes in 
the forest cover are mostly the result of timber industry (logging and establishment 
of forest plantations), forest succession on abandoned land, and wildfires. The 
eastern part of the area is characterized by extensive forests while the western part is 
more fragmented with land use dominated by agriculture and settlements. 

  
Data and methods 
 

SPOT data 

In each study area, changes were investigated using two SPOT images – a 
base image dated 1986 and a second image dated 2012 (Study area 1) or 2005 (Study 
area 2) (Table 1). To cover the entire Study area 2, two SPOT scenes were needed 
in 1986. The scenes were acquired at the same time by the two SPOT 1 HRV 
instruments. Scenes acquired in the end of the summer (August or September) are 
used because in this season forest can be easily distinguished from most grasslands 
and crops. In spring, this discrimination is challenging, particularly for the 
broadleaved and young coniferous stands. The SPOT data were provided at Level 
1A and were orthorectified in ERDAS IMAGINE using ASTER GDEM v2. Firstly, 
the three base scenes were processed using ground control points (GCP) taken from 
the 2010 Digital Orthophoto Map of Bulgaria. In Study area 1, GCP measured in the 
field were also used to check the reliability of the orthophoto map in mountainous 
area. The number of control and checkpoints and the error of orthorectification are 
shown in Table 2. The total error for each image is less than one pixel. Secondly, the 
“modern” scenes in the two study areas were orthorectified using the same (SPOT) 
sensor model in ERDAS IMAGINE and the same DEM data but the control points 
were automatically generated by the image-to-image matching module AutoSync 
and the already corrected base scenes as a reference. Checkpoints were not used and 
the accuracy not tested. All images were resampled to 20 m using the nearest 
neighbour method. The SWIR band of the SPOT 4 image (Study area 1) was not 
used in the analysis. 
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 Table 1. SPOT scenes used in the study 

Table 2. Results from the orthorectification of the base SPOT scenes. The Root Mean 

Square Error in pixels for the x-axis (RMSEx), for the y-axis (RMSEy), and the total error 

(RMSEt) are shown.  Errors are calculated using the checkpoints. 

SPOT scene ID 
Study 

area 

Number of 

control 

points 

Number of 

check 

points 

RMSEx RMSEy RMSEt 

10882658609070929252X 
Study 

area 1 
50 8 0.4342 0.3371 0.5496 

10952658608180913511X 
Study 

area 2 
32 7 0.4663 0.4391 0.6405 

10962658608180913492X 
Study 

area 2 
33 7 0.2470 0.2240 0.3334 

As part of preprocessing the SPOT data, DN-values were transformed to top 
of the atmosphere (TOA) reflectance using Equation (1): 

(1) 𝜌𝜆 =
𝜋×𝐿𝜆×𝑑

2

𝐸𝑆𝑈𝑁𝜆×cos𝜃𝑆
 , 

 

where Lλ is the spectral radiance (W/(m2 sr μm)), d is the Earth-Sun distance for the 
image acquisition date (astronomical units), ESUNλ is the solar exoatmospheric 
spectral irradiances for each band (W/(m2 μm)), and θs is the Sun zenith angle. The 
spectral radiance Lλ for each band is calculated using the gain and offset values 
provided with the image metadata. There one can find also the ESUNλ values for the 
SPOT bands. After the calculation of the TOA reflectance values the radiometric 
inconsistency between the two 1986 scenes in Study area 2 were much reduced (Fig. 
2) and they were mosaicked without further relative normalisation.   
 

Auxiliary image data 
 

High resolution aerial photos were used as a reference data and for collecting 
training and test datasets for the change detection procedure. To characterize the 
latter time point, we used the Digital Orthophoto Maps of Bulgaria for 2006 and 
2010. The data were available for the entire territory of the two study areas. They 
represent image tiles in true colour and sub-meter spatial resolution.  

SPOT scene ID Date Satellite Study area 

10882658609070929252X 7 Sept 1986 SPOT 1 Study area 1 

40892651209240831232I 24 Sept 2012 SPOT 4 Study area 1 

10952658608180913511X 18 Aug 1986 SPOT 1 Study area 2 

10962658608180913492X 18 Aug 1986 SPOT 1 Study area 2 

20962650508120915521X 12 Aug 2005 SPOT 2 Study area 2 
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Fig. 2. Excerpts from mosaics of the two 1986 scenes for Study area 2 produced by using a) 

raw DN data and b) top of the atmosphere reflectance data. The seam line is highlighted. 

To characterize the base time point we used archive black and white aerial 
photographs acquired in 1988 (Study area 1) and 1986 (Study area 2). Unfortunately, 
these data were available only for part of the territory of the two study areas. The 
aerial photographs were orthorectified in ERDAS IMAGINE. The coverage of the 
orthorectified images is shown in Fig. 1. The accuracy of the orthorectified images 
is summarized in Table 3. 

Table 3. Accuracy statistics of the orthorectified black and white aerial photographs 

Study area 
Photogrametric 

block number/year 

Number 

of frames 

Number of 

checkpoints 

RMSE (m) 

X Y Z 

Study area 1 1/1988 11 20 (16)* 2.19 2.47 5.13 

2/1988 21 11 1.49 1.82 6.99 

3/1988 12 17 3.31 4.28 9.72 

Study area 2 1/1986 18 16 0.83 1.36 3.09 

2/1986 6 7 0.66 1.17 1.69 

3/1986 6 4 0.58 1.07 2.73 

4/1986 2 2 0.98 0.34 3.13 

* the number of checkpoints on the z axis is shown in parenthesis.  
 

Methods  
 

 Image classification was selected for the change detection because this 
method not only can detect changes in the scene but also characterize the type of 
change. A simple classification scheme with four classes of land cover transition was 
used: forest disturbance, reforestation, permanent forest, and permanent non forest. 
The image classification technique is used in two ways in change detection studies. 
The first approach is the post-classification comparison where the image for each 
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date is classified separately to produce forest/non forest maps; the two maps are then 
compared to produce the change detection map. The second approach involves 
stacking the two images (from the beginning and the end of the period) and 
classifying them as a single dataset; the change detection map is thus produced in 
one step. Regardless of the approach the SPOT image data were classified using the 
Support Vector Machines (SVM) method. The model parameterization and the 
classification were applied in EnMAP-Box software [16]. The program was set to 
search for the optimal values of the Gaussian RBF Kernel parameter g and the 
regularization parameter C. The search range was set initially to 0.001÷1 500 and 
expanded if the number of support vectors was small. The training procedures for 
the two change detection approaches are outlined in the next sections. 

Approach 1: Post-classification comparison 
 

 To train the classifier we used a set of pixels collected in two steps. First, 
each study area was stratified into forest and non-forest using the CORINE Land 
Cover dataset and 1 000 random points were generated in each stratum. The type of 
land cover (forest vs. non-forest) for each point and each date was determined 
through visual interpretation of the auxiliary high resolution image data and the 
SPOT imagery. To assign the point to one of the classes we visually interpreted the 
land cover in a square plot with size 40 m centred at the point. The plots which are 
at the border of forest and non-forest patches were discarded. Using this sample of 
pixels we performed preliminary classifications and determined regions/land cover 
types which were incorrectly classified. Based on this knowledge we manually added 
more points in these problematic regions/land cover types. The reason for this 
approach is that in order to distinguish between spectrally similar classes the SVM 
is focusing on the training samples that lie at the edge of the class distributions [17]. 
That is why we need to provide more training samples representing ambiguous land 
cover types. The final number of training samples used in each classification is 
shown in Table 4.  
  
Table 4. Number of training pixels per class for the four SPOT image classifications   

Study area Date (year) Forest Non forest 

Study area 1 
1986 928 832 

2012 1018 764 

Study area 2 
1986 707 1002 

2005 796 937 

 To produce the forest/non-forest maps we used the entire sample to train the 
classifier (Table 4). Then, the same data were used for assessing the accuracy of the 
individual forest/non-forest maps by applying 10-fold cross validation. For each date 
and study area we made 10 classifications each time using 90 % of the available 
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sample for training and the rest 10 % for validation. Pixels used for accuracy 
assessment are not repeated between iterations. We then calculated the overall 
accuracy, Kappa, User's accuracy and Producer's accuracy as an average of these 
measures from the ten iterations. 
 Finally the forest/non-forest maps from the two time points were compared 
and forest change maps produced for each study area. The maps were further 
processed to eliminate class patches smaller than 1 ha. In this way many forest 
disturbance or reforestation patches, which most probably resulted from miss-
registration errors were removed. To estimate the area and accuracy of map 
categories of the change map, an independent sample was selected by stratified 
random sample with the strata defined by the map classes. A total of 150 sample 
units were used in each study area. The number was subjectively chosen and the 
main criterion was the time needed to collect the reference data for each 
classification approach and study area (600 sample units in total). The overall 
sampling intensity was distributed between the classes using Equation (2) [18]: 

(2) 𝑛𝑖 = 𝑝𝑖 × (
𝑛

2
) + (

1

𝑘
) × (

𝑛

2
) , 

 

where ni is the number of points for class i, pi is the proportion of the mapped area 
of class i, n is the overall sampling intensity (in this case n = 150), and k is the number 
of classes (in this case k = 4). Error-adjusted estimates of the areas of the thematic 
classes and map accuracy statistics (including 95 % confidence intervals) were 
produced following the recommendations of Olofsson et al. [14, 19]. 
  

Approach 2: Multitemporal classification 
 

 In the multitemporal classification, training data for the four classes – forest 
disturbance, reforestation, permanent forest, and permanent non-forest – were 
needed. As the territories occupied by the first two classes are small (and unknown) 
it was not feasible to distribute training pixels randomly. To guaranty that sufficient 
number of pixels was selected to characterise the small classes we searched the entire 
study areas systematically and selected training pixels manually. The study areas 
were covered with 10 km × 10 km grid and within each cell we tried to select a 
minimum of 4 (maximum 8) pixels from each class. In fact, several cells possessed 
no forest disturbance or reforestation patches which could be visually identified. As 
in Approach 1, preliminary classification was performed and additional training 
samples were added after examining the results. The numbers of training pixels used 
in Study area 1 were 118, 152, 96, and 116 for permanent forest, permanent non-
forest, forest disturbance, and reforestation respectively. In Study area 2 the 
corresponding numbers were 125, 128, 72, and 102. Similarly to Approach 1, the 
forest change maps were post-processed in order to remove patches smaller  
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than 1 ha. The accuracy of the forest change maps was assessed using stratified 
random sample with the strata defined by the map classes. 150 points (different from 
those of Approach 1) were used in each study area. The same methods as specified 
above were used to produce the error-matrix, area estimates, and the accuracy 
estimates.   
 

Results  
 

Approach 1: Post-classification comparison 
 

 The results from the accuracy assessment of the forest/non-forest maps 
(Table 5) show that the SVM classifier produced very accurate forest/non-forest 
maps in all four cases. The overall accuracy is between 95 % and 97 % for different 
dates and study areas. The forest change maps produced by comparison of these 
forest/non-forest maps are shown in Fig. 3 and the error matrices for the two study 
areas are presented in Table 6. The overall (error-adjusted) accuracy of the forest 
change maps is 85 % and 92 % for Study area 1 and Study area 2 respectively. These 
values are also relatively high, even though they are, as expected, lower than the 
accuracies of the individual forest/non-forest classifications. The class accuracies, 
however review more complex picture. The User and Producer Accuracies of the 
“Permanent forest” and “Permanent non-forest” classes are generally high in the two 
study areas – between 87 % and 97 %.  However the User Accuracy of the change 
classes – “Forest disturbance” and “Reforestation” is very low, ranging from 50 % 
to 65 % and the Producer Accuracy is even lower (between 26 % and 52 %). This 
indicates that the PCC failed to accurately map the forest change. More severe is the 
problem in Study area 1 where forest disturbance is confused with permanent non-
forest and reforestation is confused with both permanent land cover classes 
(Table 6). Similar is the situation in Study area 2, but here reforestation is mainly 
confused with permanent non-forest. In fact Producer Accuracies of the change 
classes are not significant except for “Reforestation” in Study area 2. The high errors 
for the change classes are likely to result in strong bias of the mapped class areas and 
this is suggested also from the estimated (error-adjusted) areas, which deviate 
markedly from the mapped areas (Table 7). It should be pointed out that the 
confidence intervals of the estimated areas are very wide, which make the estimates 
not very useful. For the forest disturbance class the estimated areas are not 
significantly different from 0 (i.e. the margin of error is ≥ 100, Table 7). The error-
adjusted areas of forest change (Table 7) show that reforestation prevails over forest 
disturbance in both study areas. The reforested area in Study area 1 is estimated to 
277 km2 (11 % of the area), while in Study area 2 it is estimated to 212 km2 (7 % of 
the area).  
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Table 5. Results from the 10-fold cross validation of the four forest/non-forest  

classifications  
 

Study 

area/Date 

Overall 

accuracy 

(%) 

Kappa 

(%) 

User Acc. Prod. Acc. Average number of test 

pixels per iteration 

F NF F NF Total F NF 

Study area 1 

1986 94.6 89.1 94.9 94.5 94.9 94.2 176 93 83 

2012 96.1 91.9 95.6 96.7 97.7 94.0 178 102 76 

Study area 2 

1986 97.4 94.5 97.3 97.5 96.3 98.1 171 71 100 

2005 97.4 94.7 97.2 97.7 97.1 97.5 173 80 94 

 

Table 6. Accuracy assessment of the post-classification comparison (Approach 1) change 

maps of the two study areas. The error matrices are expressed as estimated area 

proportions. Map categories are the rows while the reference categories are the columns. 

Accuracy measures are presented with a 95% confidence interval. Wi = proportion of area 

of class i in the map, ni = number of sample pixels of class i. 

 
Permanent 

forest 

Permanent 

non-forest 

Forest 

distur-

bance 

Refores-

tation 
Wi ni User Acc. Prod. Acc. 

Study area 1: Overall accuracy = 0.854 ± 0.058 
Permanent 

forest 
0.480 0.009 0.000 0.046 0.536 58 0.897±0.079 0.927±0.039 

Permanent 

non-forest 
0.008 0.328 0.016 0.024 0.376 47 0.872±0.096 0.938±0.057 

Forest 

disturbance 
0.005 0.000 0.006 0.001 0.011 20 0.500±0.225 0.258±0.946 

Reforestation 0.025 0.012 0.000 0.040 0.077 25 0.520 ±0.2 0.363±0.404 

Study area 2: Overall accuracy = 0.918 ± 0.042 
Permanent 

forest 
0.248 0.007 0.007 0.007 0.269 39 0.923±0.085 0.925±0.042 

Permanent 

non forest 
0.000 0.624 0.000 0.029 0.653 67 0.955±0.050 0.971±0.025 

Forest 

disturbance 
0.003 0.001 0.007 0.000 0.011 20 0.650±0.214 0.504±0.903 

Reforestation 0.017 0.011 0.000 0.039 0.067 24 0.583±0.201 0.521±0.441 
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Fig. 3. Forest change maps of Study area 1 (1986 – 2012) and Study area 2 (1986 – 2005) 

produced by post-classification comparison. Classifications are cleaned-up removing 

patches smaller than 1 ha. 
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Table 7. Class areas according to change maps (Mapped areas) and estimated areas  

with 95 % confidence intervals (CI). Margin of error is the ratio of confidence interval  

to estimated area expressed as percentage. Map bias is the difference of mapped and 

estimated area. 

 

Mapped 

area 

[km2] 

Estimated 

area 

[km2] 

Map bias 

[km2] 

± 95% CI 

[km2] 

Margin  

of error 

[%] 

PCC Study area 1 

 Permanent forest 1336.9 1293.0 44 121 9 

 Permanent non forest 938.4 872.6 66 107 12 

 Forest disturbance 27.8 53.9 –26 56 104 

 Reforestation 193.4 277.1 –84 127 46 

 Study area 2      

 Permanent forest 755.7 753.9 2 74 10 

 Permanent non forest 1834.1 1804.4 30 105 6 

 Forest disturbance 30.3 39.1 –9 39 100 

 Reforestation 189.1 211.8 –23 108 51 

MTC Study area 1      

 Permanent forest 1269.5 1241.1 28 121 10 

 Permanent non forest 976.5 912.7 64 117 13 

 Forest disturbance 27.3 63.1 –36 61 97 

 Reforestation 223.2 279.6 –56 111 40 

 Study area 2      

 Permanent forest 861.2 897.8 –37 117 13 

 Permanent non forest 1766.2 1703.5 63 133 8 

 Forest disturbance 33.8 71.3 –38 68 95 

 Reforestation 148.1 136.6 12 61 45 

 
Approach 2: Multitemporal classification 
 

 Figure 4 shows the forest change maps resulting from the multitemporal 
classifications. Visually, results are very similar to those obtained with the post-
classification comparison approach. A closer look reviews that, in general, forest 
disturbance and reforestation patches identified by the two approaches spatially 
coincide, at least for the largest patches. The overall accuracy of the forest change 
maps is 87 % and 91 % for Study area 1 and Study area 2 respectively (Table 8). 
These figures are similar to those for the PCC change maps. As may be expected, 
the pattern of class accuracies for the MTC is the same as that for the PCC with the 
accuracy of the permanent land cover classes being higher than the accuracy of the 
change classes. The User and Producer Accuracies of the “Permanent forest” and 
“Permanent non forest” classes are between 85 % and 96 %. The MTC approach 
performed better compared with the PCC in terms of accuracy of the “Reforestation” 
class (from 54 % to 80 %), the measures being significant for both study areas 
(Table 8). 



54 
 

 
 

Fig. 4. Forest change maps of Study area 1 (1986–2012) and Study area 2 (1986–2005) 

produced by multitemporal classification. Classifications are cleaned-up removing patches 

smaller than 1 ha. 
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Table 8. Accuracy assessment of the multitemporal classification (Approach 2) change 

maps of the two study areas. The error matrices are expressed as estimated area 

proportions. Map categories are the rows while the reference categories are the columns. 

Accuracy measures are presented with a 95 % confidence interval. Wi = proportion of area 

of class i in the map, ni = number of sample pixels of class i. 
 

 
Permanent 

forest 

Permanent 

non forest 

Forest 

distur-

bance 

Refores-

tation 
Wi ni 

User 

Acc. 

Prod. 

Acc. 

Study area 1: Overall accuracy = 0.867 ± 0.057 

Permanent 

forest 0.464 0.009 0.009 0.027 0.509 57 

0.912 

±0.074 

0.933 

±0.054 

Permanent 

non forest 0.024 0.334 0.008 0.024 0.391 48 

0.854 

±0.101 

0.914 

±0.060 

Forest 

disturbance 0.002 0.001 0.008 0.000 0.011 20 

0.750 

±0.195 

0.324 

±0.877 

Reforestation 0.007 0.021 0.000 0.061 0.089 25 

0.680 

±0.187 

0.543 

±0.342 

Study area 2: Overall accuracy = 0.912 ± 0.049 

Permanent 

forest 0.285 0.015 0.007 0.000 0.307 42 

0.929 

±0.079 

0.891 

±0.092 

Permanent 

non forest 0.029 0.580 0.010 0.010 0.629 65 

0.923 

±0.065 

0.957 

±0.032 

Forest 

disturbance 0.004 0.000 0.008 0.000 0.012 20 

0.700 

±0.206 

0.331 

±0.836 

Reforestation 0.002 0.011 0.000 0.039 0.053 23 

0.739 

±0.183 

0.801 

±0.350 
 

  
 Interestingly, the MTC approach confirm that the reforestation in Study area 
1 tend to mix with both stable classes, while in Study area 2 it is confused with the 
permanent non-forest (Table 8). Forest disturbance is, again, the class that is most 
difficult to map. Even though the results are still unsatisfactory, the MTC performed 
better than PCC for that class, with User Accuracies over 70 % and Producer 
Accuracies of 32 %. Note, however that Producer Accuracy are again not statistically 
significant. The estimated areas of forest change classes are significant (Table 7) but 
the confidence intervals are quite wide especially for the “Forest disturbance” class. 
The MTC approach confirm that reforestation prevails over forest disturbance in 
both study areas. The reforested area in Study area 1 is estimated to 280 km2 (11 % 
of the area), while in Study area 2 it is estimated to 137 km2 (5 % of the area). The 
disturbed forest area is estimated to 63 km2 in Study area 1 and to 71 km2 in  
Study area 2. 
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Discussion and conclusions 
  
 With this study, we attempted to test the possibility for automatic change 
detection and mapping of forest cover change in Bulgaria through satellite image 
processing. Using satellite imagery for change detection has the advantage of large 
area coverage but with the drawback of results never being perfect. Classification 
errors are inevitable in all classifications of satellite data into land surface features 
but the characteristics of the Bulgarian landscape with its hilly, patchy and varying 
terrain make it especially difficult to map. The relatively poor classification results 
for the forest cover change classes in this study proved this. As a result, instead of 
counting pixels in maps, areas need to be estimated by applying unbiased estimators 
to sample data of observations of reference conditions on the land surface [14]. A 

priory knowledge of the spatial distribution of disturbance and reforestation in the 
two study areas suggests that the SPOT-derived classifications managed to detect the 
main forest change events (for example stand replacing wildfires), but still 
significant misclassifications were observed. Thus, further improvement is needed 
to make satellite-derived change detection maps more useful, not only for 
stratification for reference data collection, but for other spatial analyses too. The 
main findings from this study and implications for monitoring the state of Bulgarian 
forests are discussed in the following paragraphs.  
 The SVM classification method has proven successful in classifying 
multispectral satellite data. It is particularly suitable for binary problems (like 
forest/non-forest maps) and, in contrast to the traditional parametric algorithms like 
maximum likelihood, can handle multimodal classes (e.g. non-forest). The results 
from Approach 1 suggest that SVM is, in most cases, very accurate in discriminating 
forest from other types of land cover in the two study areas (Table 5) and this can be 
attributed to a larger extend to the enhanced parameterization procedure 
implemented in EnMAP-Box [16], which automatically search for the optimal 
values of the parameters g and C. However, some misclassification may still be 
observed even in this “simple” binary classifications. For example in Study area 1 
the meadows along mountain river courses stay green in autumn because of the great 
soil moisture. These wet meadows have similar spectral characteristics to the 
broadleaved forest and are partly misclassified. Most other grasslands can easily be 
distinguished from forest in this season because their vegetative growth had already 
ceased. Another problematic vegetation type is the Juniperus sibirica communities 
above the tree line, which are partly misclassified as forest. In Study area 2, we 
observed errors in the classification of vineyards. Despite these difficulties, the 
accuracy of the SVM forest/non-forest maps is generally very high (Table 5). As 
regards the overall accuracy of the forest cover change maps, these are also relatively 
high. For Study area 1 maximal accuracy of 87 % was achieved and for Study area 
2 the corresponding value was 92 %. These are however overall map accuracies that 
are not of primary interest in a change detection study. Regarding the two change 
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classes results are worse. Irrespective of the change detection approach, the “Forest 
disturbance” class had maximal User accuracy of 75 % and maximal Producer 
accuracy of 32 % in Study area 1. In Study area 2 these values are 71 % and 50 % 
respectively. The “Reforestation” class had maximal User accuracy of 68 % and 
maximal Producer accuracy of 54 % in Study area 1. In Study area 2 these values are 
74 % and 80 % respectively. These figures show that: 1) the maximal User accuracies 
for the two change classes that have been achieved are similar for the two study areas 
and 2) the Producer accuracy tend to be lower than the User accuracy; it is more 
variable and, in most cases, unsatisfactory. Similar results to those presented here 
have been reported in literature, for example Baumann et al. [20]. Their accuracies 
are, however, slightly higher. 
 The 20 m spatial resolution of the SPOT imagery used in this study seems 
to be fine enough to allow for even small patches of stand-replacing change to be 
portrayed in the images. This is important because in Bulgarian forests changes may 
occur in many small areas rather than in large clear cuts. This spatial resolution also 
allows for accurate mapping of forest stand borders even if the forest patches are 
fragmented and complex in shape (e.g. linear features along roads and rivers). 
Disadvantage of the SPOT imagery is that their precise georeferencing is challenging 
because of the difficulties in recognizing ground control points on the image. Table 2 
shows that the accuracy of the orthorectified SPOT data is half a pixel. Thus the 
cumulative positional error produced when two imagery are overlaid is at the 
magnitude of one pixel. This made the detection of changes in the border areas of 
forest stands problematic and also leads to a large number of false change detections. 
 In this study, we used two simple and common change detection approaches, 
namely comparison of thematic maps from two different time points (post 
classification comparison) and multitemporal classification. From practical point of 
view, the first approach is probably to be preferred because it does not use training 
data for the two change classes. The multitemporal approach may appear more 
challenging because of the small area of forest change and the difficulty in collecting 
training data representing forest change. In short, binary classification of forest and 
non-forest is more straightforward than multitemporal classification where an 
additional time dimension is introduced. However, both approaches are technically 
feasible if SVM is used because this classification algorithm does not require large 
training dataset. Our comparison of the two approaches does not provide a definitive 
answer which of them is more accurate because the two experiments presented here 
are not directly comparable (different training data are used in each case including 
such collected manually). Instead we tried to follow literature-derived good practices 
(where available) to get the maximum performance of each procedure. For example, 
the advantage of Approach 1 is that large number of randomly distributed forest and 
non-forest training pixels can be collected in short time and we used between 700 
and 1 000 per class (Kuemmerle et al. [9], for example, recommend using minimum 
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300 to 500 ground truth points per class). As expected, the class-specific accuracies 
are quite similar for the two stable land cover classes and considerably higher than 
the accuracy of the change classes. The multitemporal approach performed better in 
our study areas as evident by the consistently higher class-specific accuracies of the 
change classes, but still the Producers Accuracies of the “Forest disturbance” class 
were not significant. More interesting than accuracy is the uncertainty of the 
estimates of the areas of forest disturbance and regeneration. The margins of error 
for the area estimates, defined here as the ratio of the 95 % confidence interval to the 
area estimate, are smaller when using the change map created by multitemporal 
classification to stratify the study areas. The area estimates of forest disturbance were 
not significantly different from zero in neither study area when using the change map 
constructed by post classification comparison as stratification. All area estimates are 
rather uncertain with no margin of error being less than 40 % but this is consequence 
of the small sample sizes in addition to the accuracy of the stratifications. A larger 
sample would have resulted in higher precision. Note that the change map created 
by multitemporal classification used much smaller training dataset than that used in 
the post-classification example. It is fair to assume that had more training data been 
used with the multitemporal approach the difference in accuracy between the two 
approaches would have been even greater. 
 Most forests in Bulgaria are actively managed and regularly inventoried and 
these activities provide statistical data to assess forested area and its change at 
national scale. For example, the Executive Forest Agency (EFA) reported increase 
in forest area from 3.14 million ha to 3.72 million ha between 1965 and 2008 [21], 
which is an annual gain of 0.42 %. However, the effect of some processes like forest 
removal by illegal logging and forest establishment on abandoned agricultural land 
(mostly pastures) may not be well accounted for in the EFA reports. The abandoned 
pastures are not part of the lands managed by the State Forestry Enterprises and their 
rate of reforestation is thus poorly known. Other problem is that the inventory 
information is available mainly on paper [21] and geospatial technologies are not 
used effectively or not used at all. It is also widely acknowledged that the access of 
society and the research community to information about forest (e.g. metadata, 
methodology used to collect information, accuracy assessment of data, etc.) is 
difficult. Another source of information that can be used to evaluate the changes in 
forest area is the CORINE Land Cover (CLC) dataset [22]. A shortcoming of the 
CLC change layer is that the minimum area of detected changes is 5 ha as opposed 
to 1 ha in this study. The methods tested in this study may complement the existing 
sources of information and further improve our understanding of the rates of forest 
change in Bulgaria. Remote sensing data are currently not used for this purpose in a 
systematic way neither by the national or regional forest authorities nor by the 
research community. In this context, it is important to evaluate the possibilities and 
the limitations of using satellite data and estimation techniques for assessing forest 
change from the perspective of the Bulgarian conditions, i.e. forest types, forestry 
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practices, land use pattern, etc. By examining the performance of two change 
detection approaches on two contrasting study areas this paper tries to contributes to 
the development in that direction. Even though we used SPOT images, the same 
change detection techniques may be applied with free satellite data like Landsat and 
Sentinel-2. With the perspective of collecting longer time series of Sentinel-2 data 
in the coming years, the need of capacity building for processing these data became 
obvious. Efforts and networks as GOFC-GOLD, the establishment of good practice 
guidelines in forest change detection [12], and the availability of free software (e.g. 
BEEODA, EnMAP-Box) are valuable for the capacity building in Bulgaria.   
 Based on the experience gained in this study we can formulate several 
conclusions and guidelines in support of future studies:   

• Comparing highly accurate forest/non-forest maps of the same area does 
not necessarily yield maps of forest cover change of high accuracy – or even 
accuracy that is significantly different from zero.  

• The magnitude of area and accuracy estimates of forest/non-forest maps 
should not be used to communicate the accuracy and area bias of change maps 
constructed by post-classification comparison – an independent assessment of the 
change map is required.  

• The multitemporal classification approach yielded maps that were more 
accurate and stratifications more efficient compared to the maps created by the post-
classification comparison. However, the Producers Accuracy of the “Forest 
disturbance” class was not significant even with the MTC approach. Larger sample, 
than that used in this study, should be used to assess accuracy of classes with small 
areas as the “Forest disturbance” in our two study areas.  

• Areas of forest disturbance and regeneration estimated by applying a 
stratified estimator to sample data were all significantly different from zero when the 
study areas were stratified using the change maps created by the multitemporal 
approach, even though just 150 sample units were collected. 

• Multitemporal classification by non-parametric algorithms of forest 
change combined with stratified estimation can be easily implemented in open 
source software, and can help Bulgarian Universities, NGOs, and Government 
agencies in monitoring forest and collecting independent, statistically sound data of 
change rates. 

• Possibilities to increase the geometric accuracy of the orthorectified SPOT 
imagery by using higher resolution/more accurate DEM and higher number of GCPs, 
etc. should be further evaluated. 

• Studies that make use of auxiliary information to separate forest from 
spectrally-similar vegetation classes (including phenological information and expert 
knowledge, i.e. manual editing of the classification output) should be attempted in 
search of improvement of the accuracy of satellite-derived forest change detection 
maps.    
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• Relying on training/validation data visually interpreted from the SPOT 
imagery itself is uncertain in many cases; it is very important to have high resolution 
archive aerial photographs in order to accurately determine the land cover of the 
training/validation pixels at the beginning of the studied period. 
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КАРТОГРАФИРАНЕ НА ПРОМЕНИТЕ НА ГОРСКИТЕ ТЕРИТОРИИ 

ЧРЕЗ SPOT ИЗОБРАЖЕНИЯ С ИЗПОЛЗВАНЕ НА РАЗЛИЧНИ 

КЛАСИФИКАЦИОННИ ПОДХОДИ 

 

П. Димитров, П. Олофсон, Г. Желев, И. Каменова 
 
 

Резюме 

В настоящето изследване е картографирано изменението на горските 
територии в два тестови участъка в България (планински и равнинно-хълмист) 
за приблизително 20-годишен период. Сравнени са два различни подхода при 
класифициране на мултитемпорални изображения от SPOT HRV/HRVIR с 
пространствена разделителна способност 20 m. Приложена е спектрална 
класификация на всяко изображение поотделно и след това са сравнени пиксел 
по пиксел, за да се открият промените в типа земно покритие („гори” и „извън 
горски територии”). Приложена е и спектрална класификация директно върху 
комбинираните данни от двете сравнявани дати. Сравнени са статистическите 
данни за точността, които показват, че и двата подхода се държат еднакво 
добре по отношение на общата точност на получените карти на промените 
(между 85.4 % и 91.8 %). Резултатите от класификациите са доста сходни за 
двата устойчиви класа земно покритие – „постоянни гори” и „постоянни 
извънгорски територии”, при които точността е относително висока. 
Точността на класовете променено земно покритие е значително по-ниска от 
тази на стабилните класове, независимо от подхода за откриване на 
изменението. Установи се, че спектралната класификация на комбинираните 
данни (т. нар. мултитемпорална класификация) се представи малко по-добре в 
избраните тестови участъци, като показа по-висока точност при 
класифициране на горските нарушения и участъците с повторно залесяване. 
Като резултат са дискутирани някои проблеми и са дадени някои препоръки 
при изследване на изменението на горски територии със спътникови 
изображения. 
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